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Figure 1: Codespec logo.
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1 ABSTRACT

Computing education researchers (CERs) theorize that learning
how to program requires the development of at least four skills:
code reading and tracing, code writing, pattern comprehension, and
pattern application [see 30]. Developing these skills requires deliber-
ate practice which involves engaging in tasks specifically designed
to improve ones’ skills in a particular domain [11]. Web-based in-
teractive programming practice environments such as CloudCoder
[23], CodeChef [7], CodeLab [1], CodeWars [8], CodingBat[25],
Edabit [19], and LeetCode [17] can be considered informal and/or
open-ended learning environments (OELEs) that support deliberate
practice—the learner decides what to learn and when [3, 12, 24]. OE-
LEs support self-directed learning [14, 16, 18] of computing topics
by inspiring programmers to complete projects that are meaningful
to them [21], by helping programmers build self-confidence, and
by increasing programmers’ sense of control over their learning
process [5]. But the absence of a predefined curriculum and/or
scaffolding, which are tenets of OELEs [12, 16, 18], has led to such
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environments being criticized for failing to help learners grasp basic
computer programming concepts [4, 20]. Learners may form inade-
quate mental models of basic programming concepts [15], struggle
to find good resources, and struggle to get help from real experts
when learning in these environments [5]. Hence, Begel and Ko [3],
in their chapter on informal learning, call for researchers to inves-
tigate whether learning technologies should “structure learning for
learners” or whether learners should “be taught how to structure
their own independent learning” outside of the classroom [p. 763].

We are designing a self-directed learning environment for com-
puter programming practice called Codespec. Its problem space
area offers learners the option to switch between solving a problem
as either a pseudocode problem (also described as subgoals and
programming plans) [6, 22], a Parsons problem [9, 26], a Faded
Parsons problem [28], a fix code problem [10], or a write-code prob-
lem. Runestone [13] is the only environment that plans to offer
programmers the option to solve the same problem as a Parsons
problem or write-code problem, and Crescendo aims to support
scaffolding for independent learning [27].

Our prototype features a “Help” menu with the options to com-
bine blocks, predict code, reveal distractors, show pseudocode, sug-
gest changes, and provide indentation. Evidence shows program-
ming plans (pseudocode) and purpose-first scaffolds can motivate
novice programmers to learn programming [see 6]. We will explore
how to incorporate pseudocode across each problem type. And
while it is more efficient to solve Parsons problems than fixing and
writing code [10], including the latter two types of problems can
increase our potential to support a broad range of learners’ abilities
[29].

Our preliminary research questions are based on prior research
on scaffolding self-directed learning with personalized learning and
learner modeling in computer science education research (CSEd)
[see 2, 18]. They are (1) how do we develop models for personal-
ized learning across the different problem types for an introduction
to programming? And (2) what is the effect of personalized scaf-
folding on self-directed learning in Codespec’s adaptive learning
environment? To evaluate our prototype and develop a model for
personalized learning, we plan to interview stakeholders in com-
puting education and conduct an experiment similar to [18].
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Figure 2: Codespec’s practice area on the Parsons problem tab.
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