Codespec: A Computer Programming Practice Environment

Carl Haynes-Magyar
School of Information
University of Michigan
Ann Arbor, MI, USA
cchaynes@umich.edu

Nathaniel Haynes-Magyar
Center for Academic Innovation
University of Michigan
Ann Arbor, MI, USA
magyarn@umich.edu

{Im} codespec

Figure 1: Codespec logo.

CCS CONCEPTS

+ Applied computing — Interactive learning environments;
« Human-centered computing — Usability testing.

KEYWORDS

Computer Programming Practice, Adaptive Learning Systems, Scaf-
folding

ACM Reference Format:

Carl Haynes-Magyar and Nathaniel Haynes-Magyar. 2022. Codespec: A
Computer Programming Practice Environment. In Proceedings of the 2022
ACM Conference on International Computing Education Research V.2 (ICER
2022), August 7-11, 2022, Lugano and Virtual Event, Switzerland. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3501709.3544278

1 ABSTRACT

Computing education researchers (CERs) theorize that learning
how to program requires the development of at least four skills:
code reading and tracing, code writing, pattern comprehension, and
pattern application [see 30]. Developing these skills requires deliber-
ate practice which involves engaging in tasks specifically designed
to improve ones’ skills in a particular domain [11]. Web-based in-
teractive programming practice environments such as CloudCoder
[23], CodeChef [7], CodeLab [1], CodeWars [8], CodingBat[25],
Edabit [19], and LeetCode [17] can be considered informal and/or
open-ended learning environments (OELEs) that support deliberate
practice—the learner decides what to learn and when [3, 12, 24]. OE-
LEs support self-directed learning [14, 16, 18] of computing topics
by inspiring programmers to complete projects that are meaningful
to them [21], by helping programmers build self-confidence, and
by increasing programmers’ sense of control over their learning
process [5]. But the absence of a predefined curriculum and/or
scaffolding, which are tenets of OELEs [12, 16, 18], has led to such

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9195-5/22/08.

https://doi.org/10.1145/3501709.3544278

environments being criticized for failing to help learners grasp basic
computer programming concepts [4, 20]. Learners may form inade-
quate mental models of basic programming concepts [15], struggle
to find good resources, and struggle to get help from real experts
when learning in these environments [5]. Hence, Begel and Ko [3],
in their chapter on informal learning, call for researchers to inves-
tigate whether learning technologies should “structure learning for
learners” or whether learners should “be taught how to structure
their own independent learning” outside of the classroom [p. 763].

We are designing a self-directed learning environment for com-
puter programming practice called Codespec. Its problem space
area offers learners the option to switch between solving a problem
as either a pseudocode problem (also described as subgoals and
programming plans) [6, 22], a Parsons problem [9, 26], a Faded
Parsons problem [28], a fix code problem [10], or a write-code prob-
lem. Runestone [13] is the only environment that plans to offer
programmers the option to solve the same problem as a Parsons
problem or write-code problem, and Crescendo aims to support
scaffolding for independent learning [27].

Our prototype features a “Help” menu with the options to com-
bine blocks, predict code, reveal distractors, show pseudocode, sug-
gest changes, and provide indentation. Evidence shows program-
ming plans (pseudocode) and purpose-first scaffolds can motivate
novice programmers to learn programming [see 6]. We will explore
how to incorporate pseudocode across each problem type. And
while it is more efficient to solve Parsons problems than fixing and
writing code [10], including the latter two types of problems can
increase our potential to support a broad range of learners’ abilities
[29].

Our preliminary research questions are based on prior research
on scaffolding self-directed learning with personalized learning and
learner modeling in computer science education research (CSEd)
[see 2, 18]. They are (1) how do we develop models for personal-
ized learning across the different problem types for an introduction
to programming? And (2) what is the effect of personalized scaf-
folding on self-directed learning in Codespec’s adaptive learning
environment? To evaluate our prototype and develop a model for
personalized learning, we plan to interview stakeholders in com-
puting education and conduct an experiment similar to [18].

https://orcid.org/0000-0002-9637-6285
https://orcid.org/
https://doi.org/10.1145/3501709.3544278
https://doi.org/10.1145/3501709.3544278
http://www.codespec.org

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland Haynes-Magyar and Haynes-Magyar

{m} codespec

Check Guess

Functions Numbers Control flow

Write a function called | check guess | that accepts one argument, guess . Inside the
function generate a random number between one and ten. If guess | is less than the

target, return “Too low", and if it's higher return “Too high". Otherwise, return “Correct!”
Compiler
Python 3.x v

M@ Pseudocode + Faded Parsons 2 Fix Code & Wirite Code

Drag blocks from here Drop blocks here
guess = target: 1 check_guess (quess) :

target = .rangrange (1,

guess < target:

Write Your Own Pseud

o Tests @ Other Solutions

Click “Run” to view feedback

Figure 2: Codespec’s practice area on the Parsons problem tab.

The goal is to design a system with diverse stakeholders that will REFERENCES

1) benefit programmers, instructors, and researchers, and 2) culti- [1] Valerie Barr and Deborah Trytten. 2016. Using turing’s craft codelab to support
vate inclusion, diversity, equity, accessibility, and sexual orientation CS1 students as they learn to program. ACM Inroads 7, 2 (2016), 67-75.

k) [2] Satabdi Basu, Gautam Biswas, and John S Kinnebrew. 2017. Learner modeling

and gendel‘ ldentlty awareness (IDEAS). for adaptive scaffolding in a computational thinking-based science learning
environment. User Modeling and User-Adapted Interaction 27, 1 (2017), 5-53.
Andrew Begel and Amy J Ko. 2019. Learning outside the classroom. (2019).

Codespec: A Computer Programming Practice Environment

(4]

Vicki E Bennett, Kyu Han Koh, and Alexander Repenning. 2011. CS education
re-kindles creativity in public schools. In Proceedings of the 16th annual joint
conference on innovation and technology in computer science education. 183-187.

[5] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate Sanders, Lynda Thomas,

[11

[12

[13]

[14]
[15]

[16]

[17

and Carol Zander. 2011. Students’ perceptions of the differences between formal
and informal learning. In Proceedings of the seventh international workshop on
Computing education research. 61-68.

Kathryn Cunningham, Barbara J Ericson, Rahul Agrawal Bejarano, and Mark
Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming
by Starting from Code’s Purpose. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1-15.

Directi. 2021. CodeChef. https://www.codechef.com/

Nathan Doctor and Jake Hoffner. 2021. Codewars. https://www.codewars.com/
Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigating
the Affect and Effect of Adaptive Parsons Problems. In Proceedings of the 19th
Koli Calling International Conference on Computing Education Research. 1-10.
Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th koli calling
international conference on computing education research. 20-29.

K Anders Ericsson, Ralf T Krampe, and Clemens Tesch-Romer. 1993. The role of
deliberate practice in the acquisition of expert performance. Psychological review
100, 3 (1993), 363.

Michael] Hannafin, Craig Hall, Susan Land, and Janette Hill. 1994. Learning in
open-ended environments: Assumptions, methods, and implications. Educational
Technology 34, 8 (1994), 48-55.

Carl C Haynes and Barbara J Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-15.

Malcolm S Knowles. 1975. Self-directed learning: A guide for learners and
teachers. (1975).

D Midian Kurland and Roy D Pea. 1985. Children’s mental models of recursive
LOGO programs. jJournal of Educational Computing Research 1, 2 (1985), 235-243.
Susan M Land and Michael J Hannafin. 1996. A conceptual framework for
the development of theories-in-action with open-ended learning environments.
Educational Technology Research and Development 44, 3 (1996), 37-53.
LeetCode. 2022 [Online]. The World’s Leading Online Programming Learning
Platform. https://leetcode.com/

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Tobias Ley, Barbara Kump, and Cornelia Gerdenitsch. 2010. Scaffolding self-
directed learning with personalized learning goal recommendations. In Inter-
national conference on user modeling, adaptation, and personalization. Springer,
75-86.

Matt MacPherson. 2021. Edabit. https://edabit.com/

Richard E Mayer. 2004. Should there be a three-strikes rule against pure discovery
learning? American psychologist 59, 1 (2004), 14.

Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, Lynda Thomas,
and Carol Zander. 2016. Why computing students learn on their own: Motiva-
tion for self-directed learning of computing. ACM Transactions on Computing
Education (TOCE) 16, 1 (2016), 1-18.

Briana B Morrison, Lauren E Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals help students solve Parsons problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education. 42—47.

Andrei Papancea, Jaime Spacco, and David Hovemeyer. 2013. An open platform
for managing short programming exercises. In Proceedings of the ninth annual
international ACM conference on International computing education research. 47—
52.

Seymour A Papert. 2020. Mindstorms: Children, computers, and powerful ideas.
Basic books.

Nick Parlante. 2021. CodingBat. https://codingbat.com/

Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52. 157-163.
Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, and Thomas W Price.
2020. Crescendo: Engaging students to self-paced programming practices. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
859-865.

Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving Instruc-
tion of Programming Patterns with Faded Parsons Problems. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1-4.

Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM
Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1-27.

Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253.

https://www.codechef.com/
https://www.codewars.com/
https://leetcode.com/
https://edabit.com/
https://codingbat.com/

	1 Abstract
	References

